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of intercondylar fossa based on deep learning: 
a novel and effective assessment method 
for the notch volume
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Abstract 

Background:  Notch volume is associated with anterior cruciate ligament (ACL) injury. Manual tracking of intercondy-
lar notch on MR images is time-consuming and laborious. Deep learning has become a powerful tool for processing 
medical images. This study aims to develop an MRI segmentation model of intercondylar fossa based on deep learn-
ing to automatically measure notch volume, and explore its correlation with ACL injury.

Methods:  The MRI data of 363 subjects (311 males and 52 females) with ACL injuries incurred during non-contact 
sports and 232 subjects (147 males and 85 females) with intact ACL were retrospectively analyzed. Each layer of 
intercondylar fossa was manually traced by radiologists on axial MR images. Notch volume was then calculated. We 
constructed an automatic segmentation system based on the architecture of Res-UNet for intercondylar fossa and 
used dice similarity coefficient (DSC) to compare the performance of segmentation systems by different networks. 
Unpaired t-test was performed to determine differences in notch volume between ACL-injured and intact groups, 
and between males and females.

Results:  The DSCs of intercondylar fossa based on different networks were all more than 0.90, and Res-UNet showed 
the best performance. The notch volume was significantly lower in the ACL-injured group than in the control group 
(6.12 ± 1.34 cm3 vs. 6.95 ± 1.75 cm3, P < 0.001). Females had lower notch volume than males (5.41 ± 1.30 cm3 vs. 
6.76 ± 1.51 cm3, P < 0.001). Males and females who had ACL injuries had smaller notch than those with intact ACL 
(p < 0.001 and p < 0.005). Men had larger notches than women, regardless of the ACL injuries (p < 0.001).

Conclusion:  Using a deep neural network to segment intercondylar fossa automatically provides a technical support 
for the clinical prediction and prevention of ACL injury and re-injury after surgery.
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Background
Anterior cruciate ligament (ACL) injury is related to 
many risk factors, which include environment, anatomi-
cal structure, hormone, and biomechanics [1–3]. Being 
able to anticipate these risks and take corresponding 
measures, can reduce the risk of ACL injury and re-injury 
after surgery [4–6]. Therefore, these risk factors should 
be studied [1, 2].

Subjects with lower femoral intercondylar fossa vol-
ume had significantly increased risk of non-contact 
ACL injury regardless of gender or shape of intercondy-
lar fossa [7–10]. Fung et  al. [11]  used a 3D mathemati-
cal model and confirmed that ACL is in close contact 
with the femoral intercondylar fossa during knee move-
ment. When subjected to anterior shear force, the ante-
rior internal bundle of ACL may hit the medial side of 
the lateral condyle of femur, resulting in ACL injury. The 
narrow intercondylar fossa is likely to produce additional 
mechanical stress on the ligament, thereby exposing it 
to a greater risk of injury. The ACL in the narrow inter-
condylar fossa has flimsy morphology and biomechan-
ics, and is thus easily damaged. Surgical evidence verifies 
that notchplasty can prevent the impingement between 
ACL and notch [12]. Several researchers suggested that 
notchplasty can be used as a routine procedure for ACL 
reconstruction, to prevent the graft from colliding with 
the intercondylar fossa and causing further injury [13]. 
However, the natural structure of the intercondylar 
fossa changes after enlargement, which may increase the 
risk of articular cartilage degeneration, biomechanical 
changes in patellofemoral joint, postoperative bleeding, 
and suboptimal rehabilitation. All these phenomena are 
not conducive to knee joint recovery activity and long-
term clinical efficacy [14, 15]. Therefore, the preopera-
tive evaluation of the femoral intercondylar fossa for ACL 
reconstruction can avoid excessive notchplasty.

Many measurement indices can be used to evaluate 
the morphology of femoral intercondylar notch, among 
which, the volume of the intercondylar fossa can well 
describe its complex 3D spatial configuration and has 
accurate results [16–18]. MRI is an important non-radi-
ation method used to accurately measure the soft tis-
sue and bone structure of the knee joint. Wratten and 
Zhang et al. calculated the 3D notch volume by manually 
tracking the boundary of notch on 2D MRI images; they 
concluded that the notch volumes were lower in ACL-
injured individuals [7–9]. However, manual tracking of 
the boundary of each layer of the intercondylar notch 
on MR images is time-consuming and laborious and has 

limited efficiency, which hinder its clinical application. 
Therefore, a simple, fast, accurate and automatic image 
processing method should be developed to segment 
the intercondylar fossa and measure notch volume. The 
method can be used to predict and prevent the occur-
rence of ACL re-injury and guide the surgical design after 
the injury.

Deep learning has become a powerful tool for process-
ing medical images due to its strong data self-learning 
ability and is widely used in various image segmentation 
tasks, including for brain tissue, bone, lung and blood 
vessels [19–24]. The segmentation function of deep 
learning can accurately locate the position of the target 
area and determine the shape and contour of the tar-
get by recognising the internal pixels or edges of region 
of interest (ROI) in medical images. The segmentation 
of cartilage, meniscus and ACL has been studied on the 
MRI of knee joint, and has satisfactory results in most 
cases [25–27]. At present, no deep learning-based tech-
nique has been developed for the segmentation of inter-
condylar notch.

This study aims to construct an automatic segmenta-
tion system of intercondylar fossa by using Res-UNet 
network. The system can automatically measure notch 
volume to compare its correlation with ACL injury.

Methods
This retrospective observational study was approved 
by the Ethics Committee of our hospital. Participants’ 
records/information were anonymous and de-identified 
prior to analysis. Therefore, the requirement for written 
informed consent was waived.

Subjects
The MR images of patients who underwent MRI scan of 
knee joint from January 2016 to October 2020 were que-
ried on the picture archiving and communication system 
(PACS) of the Third Affiliated of Southern Hospital by an 
experienced radiologist with 5  years of experience. The 
DICOM MR volumes of axial proton density- weighted 
spectral attenuated inversion recovery (PDW-SPAIR) 
(391 subjects) and axial T2-weighted spectral attenuated 
inversion recovery (T2W-SPAIR) (204 subjects) were 
collected from all subjects. A total of 3524 subjects age 
18 to 60 years who had non-contact knee injury but had 
no knee surgery history were queried, and the flow dia-
gram of patient recruitment is shown in Fig. 1. The non-
contact knee injury included pivot shift injuries, axial 
load injuries or anterior translational injuries. Potential 
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age-related changes in the femoral notch were ruled out. 
Juveniles were excluded because of their open epiphyseal 
plates, and the elderly were excluded because they had 
degenerative changes in joints. Patients with ACL injury 
for more than 1  year at the time of examination were 
excluded because knee joints with ACL defect degener-
ated faster than the normal ones; moreover, the prolif-
eration of skeletal osteophytes may affect the calculation 
of the volume of the intercondylar fossa. Patients with 
multiple ligament injuries and degenerative knee dis-
eases were also excluded. In addition, 52 notch volumes 
with poor signal-to-noise ratio or motion artifacts were 
excluded. Finally, 595 subjects were enrolled, including 
363 patients with ACL injury and 232 patients without 

ACL injury. All ACL injury diagnoses were confirmed by 
arthroscopic pathology. All intact ACL diagnoses were 
confirmed by two senior radiologists after reading the 
MR images.

MRI dataset and notch volume measurement
All subjects were scanned in the supine position with 
either a 1.5  T Achieva or 3.0  T Ingenia MR with an 
eight-channel knee coil (Philips Healthcare, Best, the 
Netherlands). The imaging parameters for the axial 
PDW-SPAIR sequence included the following: field-of-
view (FOV) = 160  mm × 160  mm × 92  mm, echo time 
(TE) = 30  ms, relaxation time (TR) = 3000  ms, slice 
thickness = 4  mm and flip angle = 90°. The imaging 

Fig. 1  Flow diagram of patient recruitment

Fig. 2  Axial slices of knee MRI showing the measurement of femoral intercondylar notch volume. A The most proximal level of the intercondylar 
notch. B One of the middle levels of the intercondylar notch. C The most distal level of the intercondylar notch
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parameters for the axial T2W-SPAIR sequence included 
the following: FOV = 160  mm × 160  mm × 105  mm, 
TE = 65 ms, TR = 2768 ms, slice thickness = 4 mm and 
flip angle = 90°. The MR images of different field inten-
sities and sequences did not affect the analysis of the 
structure of the intercondylar fossa. The axial slices 
(thickness, 4.0 mm, slice gap, 0.4 mm) were selected to 
continuously display the edges of the femoral notch and 
calculate the volume. Similar to the method of Zhang 
et  al. [9], we used ITK-SNAP software (v3.6; http://​
www.​itksn​ap.​org) to manually draw the boundary of 
each layer of the intercondylar notch according to the 
anatomical landmarks. The 2D notch area of each layer 
was calculated automatically by the software program. 
As shown in Fig. 2, the most proximal boundary of the 
intercondylar notch was defined as the level where the 
femoral condyles and their cartilages were clearly vis-
ible (Fig.  2A). The most distal boundary was defined 
as the last continuous layer of the condyle where the 
femoral condyles were anteriorly continuous (Fig. 2C). 
Figure 2B was one of the middle levels of the intercon-
dylar notch. Notch volume was calculated by summing 
all the 2D areas and multiplying its slice thickness plus 
slice gap.

All measurements were conducted by an experi-
enced radiologist with 5  years of experience. Volume 

measurements were repeated twice by the same radi-
ologist at a 3-month interval to assess intra-observer 
reliability. Measurements were made by another radiolo-
gist with 6  years of experience to assess inter-observer 
reliability.

MRI dataset preprocessing
All MR images of 595 patients were trained together as 
experimental subjects. Our segmentation model requires 
two inputs: the original MR images and the ROI of the 
outlined intercondylar fossa. Preprocessing steps was 
performed on the original MR images. The specific steps 
were as follows:

•	 To avoid the overfitting problem, we randomly 
rotated ± 10°, shifted ± 20 voxels in the x and y coor-
dinates and horizontally flipped each MR images to 
increase the training set size.

•	 Image preprocessing included resizing all the images 
into 512 × 512 to ensure uniform input dimensions, 
as well as histogram matching, and rescaling to [0,1].

•	 The intercondylar fossa was displayed in several lay-
ers of the MR images. To reduce the influence of 
irrelevant image layers on the segmentation accuracy, 
we only extracted the number of layers with ROI for 
training.

Fig. 3  Illustration of the segmentation model. The U-Net network architecture is structured into an encoder and a decoder. The encoder 
follows the classic architecture of the convolutional neural network, with each convolutional blocks followed by a rectified linear unit (ReLU) 
and a maximum polling operation to encode image features at different levels of the network. The decoder up-samples the feature map with 
subsequent up-convolutions and concatenations with the corresponding encoder blocks. The network has two inputs: the preprocessed original 
MR images and the outlined ROI of the intercondylar fossa. The segmentation architecture consists of 10 convolutional layers, 11 residual blocks 
(RBs), two pyramid pooling modules (PSPPooling), five upsampling layers, six combine blocks and a fully connected (FC) layer, and a sigmoid layer. 
Conv = convolution, RB = residual block, PSPpooling = pyramid scene parsing pooling, FC = fully connected

http://www.itksnap.org
http://www.itksnap.org
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Segmentation model
In this study, we employed semantic segmentation 
using Res-UNet [28], which was constructed based on 
the architecture of U-Net [29]. Residual blocks were 
introduced in the model [30], and its organization is 
shown in Fig. 3. The architecture of the network helps 
localise and extract image features and assemble a pre-
cise output based on encoder information. The addition 
of residual modules solves the problem of difficulty in 
training caused by network depth. Our experiments 
confirmed that the network outperforms other popular 
convolutional neural network models.

Residual block
As shown in Fig. 4 (A), each residual block (RB) consists of 
two batch normalizations layers, two rectified linear unit 
(ReLU) layers and two 3 × 3 convolutional layers.

Combine block
The feature map obtained by each convolutional layer 
of the network is concatenated to the corresponding 
up-sampling layer, so the feature map of each layer 
can be effectively used in subsequent calculations. It 
is a common skip-connection process. Compared with 
other network structures, such as FCN [31], combine 
block avoids direct supervision and loss calculation 
in the high-level feature map but combines the fea-
tures in the low-level feature map. Therefore, the final 
feature map can contain high-level features and many 
low-level features. This property allows the integra-
tion of features under different scales and improves the 
accuracy of the model results. The organization of the 
model is shown in Fig. 4 (B).

Training loss
A dice loss function is specifically designed to mitigate 
dataset class imbalance and is frequently used for medi-
cal imaging segmentation. The dice similarity coefficient 
(DSC) is measured as an overlap of the output mask with 
ground truth to assess each segmentation task. DSC meas-
ures the overlap between set X (the ground truth) and Y 
(the predicted mask). For binary class segmentation, the 
DSC is expressed as follows:

Implementation
The segmentation network was coded in Python 3.6 by 
using open-source Tensorflow packages. Training was 
performed on a GPU-optimized workstation with a sin-
gle NVIDIA GeForce RTX 2080 Ti. The training time for 
the proposed segmentation model was 30 h. The param-
eters were set as follows: a Stochastic Gradient Descent 
(SGD) + momentum optimizer with a learning rate of 
1e-4. We trained a total of 50 epochs and used dice loss 
for our training loss.

We randomly divided the data set into 534 and 61 
volumes for training and test sets, respectively. In the 
training phase, a fivefold cross-validation paradigm was 
used, in which 80% of the data were randomly allocated 
to the training queue, and the remaining 20% were used 
for validation. The process was repeated five times until 
each exam in the entire training data set was used for 

DSC =
2 ∗ |X ∩ Y|

|X| + |Y|

DiceLoss = 1−
2 ∗ |X ∩ Y|

|X| + |Y|

Fig. 4  A Structure of the residual block. Each residual block (RB) consists of two batch normalization layers, two rectified linear unit(ReLU)layers and 
two 3 × 3 convolutional layers. B The structure of the combine block. Each combine block consists of two inputs, a rectified linear unit(ReLU)layer 
and a convolutional layer
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validation  once. Finally, the trained network model was 
applied to the test set to obtain the experimental results. 
In addition, the axial MR images of 30 patients from the 
Longgang Central Hospital of Shenzhen were selected as 
an external test dataset for testing to verify the reliabil-
ity of the results. The inclusion and exclusion criteria of 
patient images are the same as above. The cumulative 
verification set statistics of the entire training data set are 
reported below.

After the segmentation results were obtained, the 
area (s) of each layer was calculated according to the 
number of pixels. The sum of the area multiplied by the 
slice thickness plus slice gap (d) of the MR images is the 
volume (V) of the intercondylar fossa. The volume is 
expressed as follows:

n is the number of layers of the intercondylar fossa in 
the MR images.

Model performances evaluation and statistical analysis
All values are shown as mean ± SD. Intraclass correlation 
coefficient (ICC) was determined to analyze the intra- 
and inter-observer reliability for the volume measure-
ments. ICC values < 0.4, 0.4–0.75, and > 0.75 represent 
poor, moderate, and good repeatability, respectively. The 
segmentation performance of the models was evalu-
ated using DSC. The numerical range of DSC is 0–1, and 
higher value indicates better segmentation effect. Pear-
son correlation and Bland–Altman analysis were used to 
evaluate the ability of the model for automatic segmen-
tation and manual segmentation. Unpaired, two-tailed 
t-test was performed to determine differences in auto-
matically measured notch volume between the ACL-
injured group and the intact group as well as between 
males and females. All the statistical analyses were per-
formed by Statistical Product and Service Solutions for 
Windows (SPSS, version 22.0, USA).

Results
Automatic segmentation performance
The intra- and inter-observer reliability for the volume 
measurements showed good repeatability. The ICC for 
intra-observer reliability is 0.981 (0.967, 0.989), and that 
for inter-observer reliability is 0.972 (0.947, 0.985).

Figure  5 shows the comparison of the sections pre-
dicted from the manual segmentations of the femoral 
intercondylar notch volume of the test data sets (Fig. 5A) 
and from the automatic segmentation (Fig. 5B). As shown 
in the scatterplots (Fig.  5C) and Bland–Altman plots 
(Fig.  5D), the volume of the data-sets between manual 

V =

n∑

1

sd

and automatic segmentations showed strong linear rela-
tionships and correlation across intercondylar notch, 
with R2 values of 0.9647.

We compared our method with U-Net with other 
methods. Table 1 shows that the mean DSCs calculated 
for predicting the femoral intercondylar notch volume 
in the data-set by using Res-UNet is 0.916 ± 0.04, while 
the relative error is 0.047 ± 0.036. Similar results were 
obtained in the external test dataset (Table  2). Hence, 
the proposed method performed better than other meth-
ods such as U-Net, Seg-Net [32], Dense-UNet [33], and 
Mobile-UNet [34].

The processing of the data of each patient’s intercondy-
lar fossa to generate a single subject volume took 10 min 
for manual segmentation but only 3–5  s for automatic 
segmentation, which is very time-saving.

Measurement of the femoral intercondylar notch
The mean value of the automatically measured inter-
condylar notch volumes in the ACL-injured and ACL 
intact groups are shown in Table  3. The notch volume 
was significantly lower in the ACL-injured cohort than 
in the intact cohort (6.12 ± 1.34 cm3 vs. 6.95 ± 1.75 cm3, 
p < 0.001). Females had predisposition for smaller femoral 
notches than males (5.41 ± 1.30 cm3 vs. 6.76 ± 1.51 cm3, 
p < 0.001).

The differences in notch volume between males and 
females are shown in Table  4. The notch volumes of 
males and females with injured ACL were 6.33 ± 1.25 
and 4.89 ± 1.23 cm3, respectively, whereas those with 
intact ACL were 7.66 ± 1.61 and 5.73 ± 1.25 cm3, respec-
tively. Males and females who had ACL injuries had 
smaller notch than those with intact ACL (p < 0.001 
and p < 0.005). Moreover, men had larger notches than 
women, regardless of the ACL injuries (p < 0.001).

Discussion
Previous studies observed that the notch volumes in the 
ACL injury group were significantly lower than those in 
the normal ACL group [7–10]. This finding indicates that 
the stenotic intercondylar fossa is a risk factor for ACL 
injury, and appropriate notchplasty can avoid this risk. It 
is useful to evaluate the shape of the intercondylar fossa 
before ACL reconstruction, though the characteristics 
of narrow notches are still controversial. To evaluate the 
correlation between notch volume and ACL injury, we 
introduced an automatic intercondylar fossa segmenta-
tion network based on deep learning. The network can 
quickly and accurately segment the intercondylar fossa 
automatically and quantify the notch volume. Although 
the training time of the network is relatively long, the 
segmentation efficiency is very high once the network 
training is completed. This significant improvement in 
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efficiency will lead to rapid extraction of information and 
efficient application in research.

Previous studies compared notch volume between 
adults with ACL injury and intact ACL. However, the 

results are conflicting, and the notch volume is not the 
same. Van Eck et al. is the first to use 3D volume meas-
urement technology to determine the relationship 
between ACL injury and intercondylar fossa size [35]. 

Fig. 5  MR images showing comparison between, A manual segmentation and B automatic segmentation predicted using the Res-UNet 
convolutional neural network. C Scatterplots and D Bland–Altman plots showing the comparison of volume calculations from the manual and 
automatic segmentation methods

Table 1  Average Results for 5-Fold Cross-Validation with Different Networks

Network Dice similarity coefficient Automatic Segmentation Volume 
(cm3)

Manual Segmentation Volume 
(cm3)

Relative Error

U-Net 0.914 ± 0.04 6.483 ± 1.500 6.874 ± 1.644 0.061 ± 0.037

Seg-Net 0.906 ± 0.10 6.384 ± 1.484 6.874 ± 1.644 0.072 ± 0.036

Res-UNet 0.916 ± 0.04 6.576 ± 1.492 6.874 ± 1.644 0.047 ± 0.036

Dense-UNet 0.901 ± 0.08 6.347 ± 1.474 6.874 ± 1.644 0.077 ± 0.035

Mobile-UNet 0.906 ± 0.07 6.312 ± 1.452 6.874 ± 1.644 0.085 ± 0.051
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Although this study used the same methods as in the pre-
sent work, the results are contradicting; they found that 
the notch volume in subjects with injured ACL was lower 
than that in subjects with normal ACL, and the difference 
was not statistically significant (P = 0.052). The reason for 
the difference in the finding is unclear but may be related 
to the small sample size and the imbalance of gender 
ratio in the study cohort. The notch volumes measured 
by Wratten and Zhang were smaller than those in the 
present work [7–9]; in particular, in the study of Wratten, 
the notch volume were lower than those in the study on 
young people with immature bone [36]. The discrepancy 
in the results may be related to the diversity of femoral 
anatomy due to ethnic differences. The frequency of ACL 
injury in women is higher than that in men while per-
forming the same exercise. The possible reasons include 
external and internal factors, such as motor skills, physi-
ological hormones, and smaller knee in women [2, 37], 
consistent with the fact that men have larger whole skel-
eton. However, the majority of patients with ACL injury 
in the present study were males. Males were involved in 

more intense exercise, such as football and basketball, 
than females, leading to an increased risk of injury. In 
addition, the hospital where the images were obtained is 
a designated hospital for football players; as such, a cer-
tain bias in admission rate may exist, resulting in more 
male patients. Since we didn’t analyze the relationship 
between the notch volume and the demographic factors, 
such as height and weight, the gender differences caused 
by all these demographic factors could not be ruled out.

Deep learning-based segmentation methods do not 
need prior knowledge of structure shape and can pro-
vide accurate segmentation in the presence of image arti-
facts. They are suitable for the segmentation of structures 
without normal shape reference. The deep learning algo-
rithms commonly used in medical image segmentation 
include U-Net [29], Res-UNet [28], Seg-Net [32], Dense-
UNet [33], and Mobile-UNet [34]. In the present study, 
we used Res-UNet to construct an intercondylar fossa 
segmentation model based on U-Net architecture and 
introduced residual blocks in the model. The introduc-
tion of the residual structure allows the construction of 
a segmentation network with deeper network layers and 
maintains high training efficiency, thereby improving the 
segmentation accuracy [28].

The accuracy of automatic segmentation of the inter-
condylar fossa is close to that of manual labelling, and the 
DSC value is more than 0.90, indicating the good perfor-
mance of the system. The results of automatic segmenta-
tion of the intercondylar fossa can help clinicians predict 
the probability of ACL injury and re-injury after surgery 
[4–6]. When the notch volume is small, preventive train-
ing during strenuous exercise is recommended. Notch-
plasty can also be considered during ACL reconstruction.

This study has some key limitations. Firstly, this retro-
spective study has inherent biases. Further prospective 
multi-institutional research is warranted to determine 
the applicability of the proposed detection system. Sec-
ondly, not all subjects in the control group are normal 
subjects, and may have meniscus injury, synovitis or 
tendon injury, which may lead to bias. To avoid evalu-
ating notch volume changes caused by other diseases, 
we excluded patients with bone defect, bone erosion 

Table 2  Results for the external test dataset with Different Networks

The relative error is expressed as the following: E = R−P

R
 R is the real volume and P is the predicted volume

Network Dice similarity coefficient Automatic Segmentation Volume 
(cm3)

Manual Segmentation Volume 
(cm3)

Relative Error

U-Net 0.914 ± 0.04 7.206 ± 1.497 7.421 ± 1.476 0.064 ± 0.018

Seg-Net 0.906 ± 0.10 7.184 ± 1.498 7.421 ± 1.476 0.071 ± 0.016

Res-UNet 0.916 ± 0.04 7.251 ± 1.492 7.421 ± 1.476 0.054 ± 0.019

Dense-UNet 0.901 ± 0.08 7.169 ± 1.490 7.421 ± 1.476 0.075 ± 0.016

Mobile-UNet 0.906 ± 0.07 7.178 ± 1.516 7.421 ± 1.476 0.078 ± 0.013

Table 3  Mean intercondylar notch volume of ACL-injured, ACL 
intact, male and female participants

Age (years) Notch volume (cm3) P value

Injured ACL 30.76 ± 8.08 6.12 ± 1.34  < 0.001

Intact ACL 33.80 ± 11.74 6.95 ± 1.75

Males 30.75 ± 8.44 6.76 ± 1.51  < 0.001

Females 35.95 ± 12.54 5.41 ± 1.30

Table 4  Mean intercondylar notch volume of male and female 
ACL-injured and ACL-intact groups

Notch volume (cm3) Gender P value

Males Females

Injured ACL 6.33 ± 1.25 4.89 ± 1.23  < 0.001

Intact ACL 7.66 ± 1.61 5.73 ± 1.25  < 0.001

P value  < 0.001  < 0.005
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and bone hyperplasia, such as osteochondritis exfo-
liation, villonodular synovitis, and obvious degenera-
tive changes in joint. Thirdly, our research subjects are 
Chinese people aged 16 to 60. We excluded teenag-
ers, elderly, and patients who underwent knee surgery. 
Therefore, our conclusion does not apply to all patients. 
Fourthly, we could not make corrections for anthro-
pometric factors due to missing information about the 
height, weight, and other demographic factors of the 
participants. Gender differences caused by these demo-
graphic factors could not be ruled out and need to be 
further verified by future research.

Conclusions
In this study, we firstly published a deep learning model 
that automatically measured intercondylar notch with 
high precision. The model such this saves huge amount of 
time in measuring notch volume, which is helpful to pre-
dict and prevent ACL injury and to evaluate the neces-
sity of notchplasty before ACL reconstruction to prevent 
ACL re-injury.
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